Меню
Разработки
Разработки  /  Математика  /  Подготовка к ЕГЭ  /  11 класс  /  Точки экстремума, экстремумы функции (методический материал)

Точки экстремума, экстремумы функции (методический материал)

Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика.
23.04.2016

Описание разработки

К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале. Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X, если для любых формула и формула выполняется неравенство формула. Другими словами – большему значению аргумента соответствует большее значение функции. Определение убывающей функции.

Функция y=f(x) убывает на интервале X, если для любых формула и формула выполняется неравенство формула. Другими словами – большему значению аргумента соответствует меньшее значение функции.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

Точки экстремума, экстремумы функции (методический материал)

если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;

если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

найти область определения функции;

найти производную функции;

Весь материал - в документе.

Содержимое разработки

Точки экстремума, экстремумы функции.


Точку называют точкой максимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции.

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.

На первом рисунке наибольшее значение функции на отрезке [a;b] достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b, которая не является точкой максимума.

К началу страницы

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;

  • если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

  • найти область определения функции;

  • найти производную функции;

  • решить неравенства и на области определения;

  • к полученным промежуткам добавить граничные точки, в которых функция определена и непрерывна.

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции. В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2, а знаменатель обращается в ноль при x=0. Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

функция возрастает при , убывает на интервале (0;2].

К началу страницы

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Тогда

  • если при и при , то - точка максимума;

  • если при и при , то - точка минимума.

Другими словами:

  • если в точке функция непрерывна и в ней производная меняет знак с плюса на минус, то - точка максимума;

  • если в точке функция непрерывна и в ней производная меняет знак с минуса на плюс, то - точка минимума.

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.

  • Находим производную функции на области определения.

  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума, проходя через эти точки, производная как раз может изменять свой знак).

  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).

  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2.

Находим производную:

Нулями числителя являются точки x=-1 и x=5, знаменатель обращается в ноль при x=2. Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6.

, следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

.

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .



-80%
Курсы повышения квалификации

Система работы с высокомотивированными и одаренными учащимися по учебному предмету

Продолжительность 72 часа
Документ: Удостоверение о повышении квалификации
4000 руб.
800 руб.
Подробнее
Скачать разработку
Сохранить у себя:
Точки экстремума, экстремумы функции (методический материал) (0.1 MB)

Комментарии 0

Чтобы добавить комментарий зарегистрируйтесь или на сайт